Provable Security for Public Key Schemes

Jürgen Ecker

FH Hagenberg, Computer- und Mediensicherheit
juergen.ecker@fh-hagenberg.at

Mathematik 2005, Klagenfurt
Outline

1. Introduction
 - Examples

2. Defining Security
 - What the attacker can
 - What the attacker wants

3. Relations among security properties
 - A concise definition of IND

4. Security of cryptosystems
 - Models
 - RSA
 - ElGamal
Examples
One-wayness
Examples
One-wayness
Examples
One-wayness

What’s inside the envelope?
Examples
Indistinguishability
Examples
Indistinguishability
Examples
Indistinguishability

Which of the two messages?
"'i love you'"? "'can you repare my toilet'"?
Examples
Non-malleability

\[i \text{ love you} \]
Examples
Non-malleability

I don’t care what she writes, I only want to change it to something related.

→

i love you

→

I don’t care what she writes, I only want to change it to something related.
Examples
Non-malleability

I don’t care what she writes, I only want to change it to something related.
Examples
Non-malleability

I don’t care what she writes, I only want to change it to something related.
Examples
Non-malleability

I don’t care what she writes, I only want to change it to something related.

related!
Modelling the attacker
Information available to the attacker

- CPA (chosen plaintext attack): choose a plaintext and see its encryption.
- VCA (validity checking attack): choose a text and see if it is a valid ciphertext
- PCA (plaintext checking attack): choose a plaintext-ciphertext pair and see if they correspond.
- CCA1 (chosen ciphertext attack, lunchtime attack): choose a ciphertext and see the corresponding plaintext.
- CCA2 (adaptive chosen ciphertext attack): CCA1 after having seen the challenge ciphertext.

The attacker can run probabilistic polynomial time algorithms.
Modelling the attacker
Information available to the attacker

- CPA (chosen plaintext attack): choose a plaintext and see its encryption.
- VCA (validity checking attack): choose a text and see if it is a valid ciphertext
- PCA (plaintext checking attack): choose a plaintext-ciphertext pair and see if they correspond.
- CCA1 (chosen ciphertext attack, lunchtime attack): choose a ciphertext and see the corresponding plaintext.
- CCA2 (adaptive chosen ciphertext attack): CCA1 after having seen the challenge ciphertext.

The attacker can run probabilistic polynomial time algorithms.
Modelling the attacker
Information available to the attacker

- CPA (chosen plaintext attack): choose a plaintext and see its encryption.
- VCA (validity checking attack): choose a text and see if it is a valid ciphertext.
- PCA (plaintext checking attack): choose a plaintext-ciphertext pair and see if they correspond.
- CCA1 (chosen ciphertext attack, lunchtime attack): choose a ciphertext and see the corresponding plaintext.
- CCA2 (adaptive chosen ciphertext attack): CCA1 after having seen the challenge ciphertext.

The attacker can run probabilistic polynomial time algorithms.
Modelling the attacker
Information available to the attacker

- CPA (chosen plaintext attack): choose a plaintext and see its encryption.
- VCA (validity checking attack): choose a text and see if it is a valid ciphertext.
- PCA (plaintext checking attack): choose a plaintext-ciphertext pair and see if they correspond.
- CCA1 (chosen ciphertext attack, lunchtime attack): choose a ciphertext and see the corresponding plaintext.
- CCA2 (adaptive chosen ciphertext attack): CCA1 after having seen the challenge ciphertext.

The attacker can run probabilistic polynomial time algorithms.
Modelling the attacker

Information available to the attacker

- CPA (chosen plaintext attack): choose a plaintext and see its encryption.
- VCA (validity checking attack): choose a text and see if it is a valid ciphertext.
- PCA (plaintext checking attack): choose a plaintext-ciphertext pair and see if they correspond.
- CCA1 (chosen ciphertext attack, lunchtime attack): choose a ciphertext and see the corresponding plaintext.
- CCA2 (adaptive chosen ciphertext attack): CCA1 after having seen the challenge ciphertext.

The attacker can run probabilistic polynomial time algorithms.
Modelling the attacker
Information available to the attacker

- CPA (chosen plaintext attack): choose a plaintext and see its encryption.
- VCA (validity checking attack): choose a text and see if it is a valid ciphertext
- PCA (plaintext checking attack): choose a plaintext-ciphertext pair and see if they correspond.
- CCA1 (chosen ciphertext attack, lunchtime attack): choose a ciphertext and see the corresponding plaintext.
- CCA2 (adaptive chosen ciphertext attack): CCA1 after having seen the challenge ciphertext.

The attacker can run probabilistic polynomial time algorithms.
Modelling the attacker
Goals of an attacker

- OW (one-wayness): given a ciphertext find the corresponding plaintext.
- SEM.SEC (semantic security, polynomial security): given a ciphertext find partial information about the plaintext.
- IND (indistinguishability): distinguish between encryptions of two chosen plaintexts.
- SEM.SEC.REL: given a ciphertext find a plaintext which is in some way related to the plaintext corresponding to the given ciphertext.
- NM (non-malleability): given a ciphertext find another ciphertext such that the two ciphertexts are related.
Modelling the attacker
Goals of an attacker

- **OW** (one-wayness): given a ciphertext find the corresponding plaintext.
- **SEM.SEC** (semantic security, polynomial security): given a ciphertext find partial information about the plaintext.
- **IND** (indistinguishability): distinguish between encryptions of two chosen plaintexts.
- **SEM.SEC.REL**: given a ciphertext find a plaintext which is in some way related to the plaintext corresponding to the given ciphertext
- **NM** (non-malleability): given a ciphertext find another ciphertext such that the two ciphertexts are related.
Modelling the attacker

Goals of an attacker

- **OW (one-wayness):** given a ciphertext find the corresponding plaintext.
- **SEM.SEC (semantic security, polynomial security):** given a ciphertext find partial information about the plaintext.
- **IND (indistinguishability):** distinguish between encryptions of two chosen plaintexts.
- **SEM.SEC.REL:** given a ciphertext find a plaintext which is in some way related to the plaintext corresponding to the given ciphertext.
- **NM (non-malleability):** given a ciphertext find another ciphertext such that the two ciphertexts are related.
Modelling the attacker

Goals of an attacker

- OW (one-wayness): given a ciphertext find the corresponding plaintext.
- SEM.SEC (semantic security, polynomial security): given a ciphertext find partial information about the plaintext.
- IND (indistinguishability): distinguish between encryptions of two chosen plaintexts.
- SEM.SEC.REL: given a ciphertext find a plaintext which is in some way related to the plaintext corresponding to the given ciphertext.
- NM (non-malleability): given a ciphertext find another ciphertext such that the two ciphertexts are related.
Modelling the attacker
Goals of an attacker

- **OW** (one-wayness): given a ciphertext find the corresponding plaintext.
- **SEM.SEC** (semantic security, polynomial security): given a ciphertext find partial information about the plaintext.
- **IND** (indistinguishability): distinguish between encryptions of two chosen plaintexts.
- **SEM.SEC.REL**: given a ciphertext find a plaintext which is in some way related to the plaintext corresponding to the given ciphertext.
- **NM** (non-malleability): given a ciphertext find another ciphertext such that the two ciphertexts are related.
Defining IND

Informally,

- key generator generates a key pair
- message finder F get the public key and chooses two messages m_0, m_1
- line tapper T gets the two plaintexts and the encryption of one of them and answers 0 if he thinks that the encrypted message is m_0 and 1 otherwise
- both message finder and line tapper may encrypt (polynomially many) plaintexts with arbitrary keys (CPA)
- when m_0 is encrypted the probability that T answers 0 should be negligibly bigger than when m_1 is encrypted
A concise definition of IND

Formally:

Definition ([Dolev, Dwork & Naor, 1995], [Fuchsbauer, 2005])

The public key cryptosystem \((KG, E, D)\) is IND-CPA secure iff

\[
\forall F, T \in PPTM \ \forall c > 0 \ \exists n_c \in \mathbb{N} \ \forall n > n_c : \\
Pr[Succ_{T, E, n}(KG_1(1^n), F(KG_1(1^n))) \geq \frac{1}{n^c}] < \frac{1}{n^c},
\]

where

\[
Succ_{T, E, n}(e, (m_0, m_1)) := | Pr[T(e, m_0, m_1, E_e(m_0, R_n)) = 0] \\
- Pr[T(e, m_0, m_1, E_e(m_1, R_n)) = 0] |.
\]
Defining SEM.SEC.REL

Informally,

- key generator generates a key pair
- A_1 gets the public key and generates a description of a probability distribution \hat{M} of messages
- a message m is chosen according to \hat{M} and encrypted with the public key
- A_2 gets the public key, \hat{M}, and the encryption of m, and returns β; measure $\pi_n(A, R) = Pr[R(m, \beta) = 1]$
- an adversary simulator has to do the same, but without seeing an encryption; measure $\pi'_n(A', R) = Pr[R(m', \beta') = 1]$
- for any relation R, $\text{Adv}_A := |\pi_n(A, R) - \pi'_n(A', R)|$ should be negligible
A concise definition of SEM.SEC.REL-CPA

Definition

Adversary

\[\pi_n(A, R) := Pr[R(m, \beta) = 1 :: e \leftarrow KG_1(1^n); \hat{M} \leftarrow A_1(e); \]
\[m \leftarrow U(\hat{M}); r \in_R \{0, 1\}^{p(n)}; \gamma := E_e(m, r); \]
\[\beta \leftarrow A_2(e, \hat{M}, \gamma, hist(m))] \]

Adversary simulator

\[\pi'_n(A', R) := Pr[R(m, \beta) = 1 :: e \leftarrow KG_1(1^n); \hat{M} \leftarrow A'_1(e); \]
\[m \leftarrow U(\hat{M}); \beta \leftarrow A'_2(e, \hat{M}, hist(m))] \]
A concise definition of SEM.SEC.REL-CPA

Definition ([Dolev, Dwork & Naor, 1995], [Fuchsbauer, 2005])

The public key cryptosystem \((KG, E, D)\) is \textit{semantically secure with respect to relations} iff

\[
\forall A \exists A' \ \forall R \ \forall \text{hist} \ \forall c > 0 \ \exists n_c \in \mathbb{N} \ \forall n > n_c : \\
| \pi_n(A, R) - \pi'_n(A', R) | < \frac{1}{n^c}
\]
Theorem

For any public key cryptosystem, SEM.SEC, IND, and SEM.SEC.REL are equivalent under CPA.

Proof.

- SEM.SEC vs. IND: [Goldwasser & Micali, 1984], [Goldreich, 2004]
- IND vs. SEM.SEC.REL: [Dolev, Dwork & Naor, 1995], [Fuchsbauer, 2005]
A bigger picture

implication: ← separation: ⤵

OW − CPA → IND − CPA → NM − CPA

OW − VCA

OW − PCA

OW − CCA1 → IND − CCA1 → NM − CCA1

OW − CCA2 → IND − CCA2 → NM − CCA2
Ideal worlds

To prove the security of efficient schemes, cryptographic primitives are replaced by their ideal counterparts.

- random oracle model: hash function = random function
- ideal cipher model: block cipher = random permutation
- generic model: concrete group = blackbox group

There are cryptosystems which are (provably) secure in the random oracle model, but insecure when the random function is replaced by a concrete hash function. All known examples are pathological.
Ideal worlds

To prove the security of efficient schemes, cryptographic primitives are replaced by their ideal counterparts.

- **random oracle model**: hash function = random function
- **ideal cipher model**: block cipher = random permutation
- **generic model**: concrete group = blackbox group

There are cryptosystems which are (provably) secure in the random oracle model, but insecure when the random function is replaced by a concrete hash function. All known examples are pathological.
Ideal worlds

To prove the security of efficient schemes, cryptographic primitives are replaced by their ideal counterparts.

- random oracle model: hash function = random function
- ideal cipher model: block cipher = random permutation
- generic model: concrete group = blackbox group

There are cryptosystems which are (provably) secure in the random oracle model, but insecure when the random function is replaced by a concrete hash function. All known examples are pathological.
Ideal worlds

To prove the security of efficient schemes, cryptographic primitives are replaced by their ideal counterparts.

- random oracle model: hash function = random function
- ideal cipher model: block cipher = random permutation
- generic model: concrete group = blackbox group

There are cryptosystems which are (provably) secure in the random oracle model, but insecure when the random function is replaced by a concrete hash function. All known examples are pathological.
Ideal worlds

To prove the security of efficient schemes, cryptographic primitives are replaced by their ideal counterparts.

- random oracle model: hash function = random function
- ideal cipher model: block cipher = random permutation
- generic model: concrete group = blackbox group

There are cryptosystems which are (provably) secure in the random oracle model, but insecure when the random function is replaced by a concrete hash function. All known examples are pathological.
Ideal worlds

To prove the security of efficient schemes, cryptographic primitives are replaced by their ideal counterparts.

- random oracle model: hash function = random function
- ideal cipher model: block cipher = random permutation
- generic model: concrete group = blackbox group

There are cryptosystems which are (provably) secure in the random oracle model, but insecure when the random function is replaced by a concrete hash function. All known examples are pathological.
RSA

Standard (textbook) RSA ([Rivest, Shamir & Adleman, 1978])

- **Keys**: \(p, q \in \mathbb{P}, n = pq, e \in \mathbb{Z}_{(p-1)(q-1)}^*, d = e^{-1} \mod (p-1)(q-1); (n, e) \text{ public, } (n, d) \text{ private} \)
- **Encryption**: \(c = m^e \mod n \)
- **Decryption**: \(m = c^d \mod n \)

Security:
- OW-CPA (RSA-problem)
- OW-PCA: reduction to RSA-problem
- OW-CCA2: no (ciphertext blinding)
- IND-CPA: no (encrypt the two plaintexts and compare)
Standard (textbook) RSA ([Rivest, Shamir & Adleman, 1978])
- Keys: $p, q \in \mathbb{P}$, $n = pq$, $e \in \mathbb{Z}^*_{(p-1)(q-1)}$, $d = e^{-1} \mod (p-1)(q-1)$; (n, e) public, (n, d) private
- Encryption: $c = m^e \mod n$
- Decryption: $m = c^d \mod n$

Security:
- OW-CPA (RSA-problem)
- OW-PCA: reduction to RSA-problem
- OW-CCA2: no (ciphertext blinding)
- IND-CPA: no (encrypt the two plaintexts and compare)
RSA
Probabilistic Encryption

Micali–Goldwasser–Encryption
- Encryption (basically):
 \[1 \mapsto \text{a random square modulo } n \]
 \[0 \mapsto \text{a random non-square modulo } n \]

Security:
- IND-CPA: reduction to Quadratic Reduosity Assumption
- OW-CCA2: no ("multiplying-y-attack")
RSA
Probabilistic Encryption

Micali–Goldwasser–Encryption
- Encryption (basically):
 - $1 \mapsto$ a random square modulo n
 - $0 \mapsto$ a random non-square modulo n

Security:
- IND-CPA: reduction to Quadratic Reduosity Assumption
- OW-CCA2: no ("multiplying-y-attack")
RSA

RSA-OAEP

RSA-OAEP (Optimal Asymmetric Encryption Padding) ([Bellare & Rogaway, 1994]); the basic idea:

plaintext $\parallel 0 \ldots 0 \quad$ random bits

\[h_1 \leftarrow \]
\[h_2 \rightarrow \]
\[s \leftarrow \]
\[t \rightarrow \]
\[\text{RSA} \]
RSA
RSA-OAEP

Security:

- IND-CCA1: reduction to “RSA is a one-way trapdoor permutation” ([Bellare & Rogaway, 1994], [Shoup, 2000/01])
- IND-CCA2: reduction to “RSA is partial domain one-way” ([Shoup, Pointcheval 2001])
- all reductions in the random oracle model
RSA
RSA-OAEP

Security:
- IND-CCA1: reduction to “RSA is a one-way trapdoor permutation” ([Bellare & Rogaway, 1994], [Shoup, 2000/01])
- IND-CCA2: reduction to “RSA is partial domain one-way” ([Shoup, Pointcheval 2001])
- all reductions in the random oracle model
Security:

- IND-CCA1: reduction to “RSA is a one-way trapdoor permutation” ([Bellare & Rogaway, 1994], [Shoup, 2000/01])
- IND-CCA2: reduction to “RSA is partial domain one-way” ([Shoup, Pointcheval 2001])
- all reductions in the random oracle model
ElGamal

Standard (textbook) ElGamal ([ElGamal, 1985])

- Keys: public key \((p, g, A)\), private key \(a, A = g^a \mod p\)
- Encryption: \(B = g^k \mod p, c = mA^k \mod p\)
- Decryption: \(m = cB^{-a} \mod p\)

Security:

- OW-CPA: reduction to CDH (from \(g^x\) and \(g^y\) compute \(g^{xy}\))
- IND-CPA: reduction to DDH (distinguish \((g^x, g^y, g^{xy})\) from a random triple \((a, b, c)\)) (for "suitable" parameters)
- OW-PCA: reduction to GDH (solve CDH with a DDH-oracle)
- NM-CPA: no, plaintexts of \((B, c)\) and \((B, 2c)\) are related
- OW-CCA2: no, ciphertext blinding
ElGamal

Standard (textbook) ElGamal ([ElGamal, 1985])

- Keys: public key \((p, g, A)\), private key \(a, A = g^a \mod p\)
- Encryption: \(B = g^k \mod p, c = mA^k \mod p\)
- Decryption: \(m = cB^{-a} \mod p\)

Security:

- OW-CPA: reduction to CDH (from \(g^x\) and \(g^y\) compute \(g^{xy}\))
- IND-CPA: reduction to DDH (distinguish \((g^x, g^y, g^{xy})\) from a random triple \((a, b, c)\)) (for "suitable" parameters)
- OW-PCA: reduction to GDH (solve CDH with a DDH-oracle)
- NM-CPA: no, plaintexts of \((B, c)\) and \((B, 2c)\) are related
- OW-CCA2: no, ciphertext blinding
ElGamal
Cramer–Shoup Cryptosystem

Cramer–Shoup Cryptosystem ([Cramer & Shoup, 1998])
- Encryption: 4 exponentiations, 2 multiplications, 1 hash function evaluation
- Decryption: 2 exponentiation, 2 multiplications, 1 inversion, 1 hash function evaluation

Security:
- IND-CCA2: reduction to DDH
For Further Reading I

For Further Reading II

For Further Reading III

G. Fuchsbauer.
Diplomarbeit, Linz, 2005.

S. Goldwasser, S. Micali.
Probabilistic Encryption.
Journal of Computer and System Sciences, 270–299, 1984

V. Shoup.
OAEP Reconsidered.
Crypto ’01, Springer, 2001